- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Chen, Liangduo (1)
-
Chi, Xuguang (1)
-
Ding, Aijun (1)
-
Donahue, Neil M. (1)
-
Ehn, Mikael (1)
-
Ge, Dafeng (1)
-
Huang, Dandan (1)
-
Li, Yuanyuan (1)
-
Liu, Chong (1)
-
Liu, Yuliang (1)
-
Nie, Wei (1)
-
Qi, Ximeng (1)
-
Sun, Peng (1)
-
Wang, Jiaping (1)
-
Wang, Lei (1)
-
Wang, Tianyi (1)
-
Wang, Zhe (1)
-
Worsnop, Douglas (1)
-
Xu, Zheng (1)
-
Xu, Zhengning (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract. Oxygenated organic molecules (OOMs) are the crucial intermediates linkingvolatile organic compounds (VOCs) to secondary organic aerosols (SOAs) in theatmosphere, but comprehensive understanding of the characteristics of OOMsand their formation from VOCs is still missing. Ambient observations ofOOMs using recently developed mass spectrometry techniques are stilllimited, especially in polluted urban atmospheres where VOCs and oxidants areextremely variable and complex. Here, we investigate OOMs, measured by anitrate-ion-based chemical ionization mass spectrometer at Nanjing ineastern China, through performing positive matrix factorization on binnedmass spectra (binPMF). The binPMF analysis reveals three factors aboutanthropogenic VOC (AVOC) daytime chemistry, three isoprene-relatedfactors, three factors about biogenic VOC (BVOC) nighttime chemistry, andthree factors about nitrated phenols. All factors are influenced by NOxin different ways and to different extents. Over 1000 non-nitro moleculeshave been identified and then reconstructed from the selected solution ofbinPMF, and about 72 % of the total signals are contributed bynitrogen-containing OOMs, mostly regarded as organic nitrates formed throughperoxy radicals terminated by nitric oxide or nitrate-radical-initiatedoxidations. Moreover, multi-nitrates account for about 24 % of the totalsignals, indicating the significant presence of multiple generations,especially for isoprene (e.g., C5H10O8N2 andC5H9O10N3). Additionally, the distribution of OOMconcentration on the carbon number confirms their precursors are driven by AVOCsmixed with enhanced BVOCs during summer. Our results highlight the decisiverole of NOx in OOM formation in densely populated areas, and we encouragemore studies on the dramatic interactions between anthropogenic and biogenicemissions.more » « less
An official website of the United States government
